Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria.
نویسندگان
چکیده
On the basis of function and sequence similarities, the vertebrate fucosyltransferases can be classified into three groups: alpha-2-, alpha-3-, and alpha-6-fucosyltransferases. Thirty new putative fucosyltransferase genes from invertebrates and bacteria and six conserved peptide motifs have been identified in DNA and protein databanks. Two of these motifs are specific of alpha-3-fucosyltransferases, one is specific of alpha-2-fucosyltransferases, another is specific of alpha-6-fucosyltransferases, and two are shared by both alpha-2- and alpha-6-fucosyltranserases. Based on these data, literature data, and the phylogenetic analysis of the conserved peptide motifs, a model for the evolution offucosyltransferase genes by successive duplications, followed by divergent evolution is proposed, with either two different ancestors, one for the alpha-2/6-fucosyltransferases and one for the alpha-3-fucosyltransferases or a single common ancestor for the two families. The expected properties of such an hypothetical ancestor suggest that the plant or insect alpha-3-fucosyltransferases using chitobiose as acceptor might be the present forms of this ancestor, since fucosyltransferases using chitobiose as acceptor are expected to be of earlier appearance in evolution than enzymes using N -acetyllactosamine. However, an example of convergent evolution of fucosyltransferase genes is suggested for the appearance of the Leaepitopes found in plants and primates.
منابع مشابه
Molecular evolution of protein O-fucosyltransferase genes and splice variants.
O-Fucose has been described on both epidermal growth factor-like (EGF-like) repeats and Thrombospondin type 1 repeats (TSRs). The enzyme adding fucose to EGF-like repeats, protein O-fucosyltransferase 1 (Pofut1), is a soluble protein located in the lumen of endoplasmic reticulum (ER). A second protein O-fucosyltransferase, Pofut2, quite divergent from its homolog Pofut1, has recently been shown...
متن کاملAmphioxus Evx genes: implications for the evolution of the Midbrain-Hindbrain Boundary and the chordate tailbud.
Evx genes are widely used in animal development. In vertebrates they are crucial in gastrulation, neurogenesis, appendage development and tailbud formation, whilst in protostomes they are involved in gastrulation and neurogenesis, as well as segmentation at least in Drosophila. We have cloned the Evx genes of amphioxus (Branchiostoma floridae), and analysed their expression to understand how th...
متن کاملLeft-right patterning: conserved and divergent mechanisms.
The left-right (LR) asymmetry of visceral organs is fundamental to their function and position within the body. Over the past decade or so, the molecular mechanisms underlying the establishment of such LR asymmetry have been revealed in many vertebrate and invertebrate model organisms. These studies have identified a gene network that contributes to this process and is highly conserved from sea...
متن کاملFucosyltransferase substrate specificity and the order of fucosylation in invertebrates.
Core alpha1,6-fucosylation is a conserved feature of animal N-linked oligosaccharides being present in both invertebrates and vertebrates. To prove that the enzymatic basis for this modification is also evolutionarily conserved, cDNAs encoding the catalytic regions of the predicted Caenorhabditis elegans and Drosophila melanogaster homologs of vertebrate alpha1,6-fucosyltransferases (E.C. 2.4.1...
متن کاملEvolutionary History of the Vertebrate Mitogen Activated Protein Kinases Family
BACKGROUND The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. METHODOLOGY/PRINCIPAL FINDINGS The MAPK family members were collected from literat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glycobiology
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1999